When we were young some we had made some scientific discoveries that we described to the elders around us. They were unable to make any sense of it but had an intuitive feel that there might be something to our blabberings; so they carted us to some professional scientists who were supposed to understand such things. Their understanding of the matter was insufficient to understand what we narrated them; however, they interpreted our explorations as the possibility of the beginnings of a proto-scientific fascination in us. So as well-meaning adults they decided to give us a general lecture before sending us off. We heard attentively. They said that we, in our childish fantasy, were looking at extremely disparate or unconnected systems and that our observations purporting to be fundamental, unifying findings were a mark of someone who really did not get the scientific process. It was all about focusing on a controlled model system and understanding it deeply by asking structured questions, constructing models and testing those models they said. Further they added that you do not just make fundamental discoveries about well-understood things like biological evolution by taking a bunch of data generated by various different people and looking at it with your intuition: as though the people who actually generated the data could not have seen what you have. At the conclusion of the lecture our elders felt we were blabbering after all and let us to our own devices. This was not the first time we were to hear such things in life. When we reached the shores of the mlechCha-land we were again told about focusing on one problem (the word focus being repeated many time). To this the mlechCha-s added buzzwords like “thinking big”; “the one clever experiment”; “big science”; million dollar grants”; “a structured grant explaining what your will do in the next 3 or 5 years”. It was even considered a fulfilling and important exercise for a starting graduate student to write a mock grant that would describe a series of experiments on a hypothetical model worth a PhD of lab work. By this time we had well realized that we were after all not this kind of scientist and brushed all this aside to pursue our own course in science with like-minded colleagues. Nevertheless, all these life-experiences had taught us something about the way scientific discovery happens and how the process is widely misunderstood. Meander through some of this below
The Jewish philosopher Popper suggested that the development of science resembles evolution by selective processes (e.g. biological evolution): When a problem situation (PS1) is encountered several tentative theories (TT1..n) are proposed to explain. These TT1..n are subject to falsification i.e. tested to see if they can produce explanations for all the facts concerning PS1. Popper called this the error elimination (EE1) step. Then new observations might produce a new problem situation PS2 that challenge the theory (Ti) which survived EE1 and the process iteratively continues -
PS1-> [TT1..n]-|EE1|->Ti-[new observations]->PS2
^----------------------------------------------'
As a classic illustration of this problem people often cite the development of modern physics. The need to explain the heliocentric nature of the solar system, gravitational acceleration of objects falling to earth [PS1] and the like eventually led to classical mechanics [Ti] with EE1 being performed by Galileo, Kepler and Newton. This theory explained most observations of the age well and gave good predictions for orbits of planets, existence of new planets (Neptune) and several other problems in physics. However, the new observation on the excess precession of the orbit of Mercury resulted in a problem [PS2] that was beyond Ti.
Another Jewish philosopher Kuhn captured the inherent cyclicity of this process, in addition to better describing the actual development of science in real terms: He proposed that the development of science proceeds via three steps namely: 1) the pre-paradigm stage where there are several equal competing paradigms with one of them eventually emerging as better than the rest. One can map this to Ti coming out of the EE1 process of Popper. 2) the ‘normal science’ stage where all pertinent scientific discoveries adhere to the established paradigm: in this stage new observations are explained according to the existing paradigm, and Kuhn importantly proposes that findings failing to conform to that paradigm are not taken as falsifications of the paradigm (unlike Popper). Rather they are treated as deviations resulting from improper experiments or errors by the scientist or incorrect understanding of the predictions of the paradigm rather than an error in the theory. 3) The revolutionary stage: accumulation of problematic observations results in crisis because the existing paradigm cannot explain several independent, and/or reproducible observations that can no longer be swept under the carpet as researcher errors. This sets the clock back to the first stage with new alternative paradigms competing to explain the process.
Thus, Kuhn better captures the actual tension well-known to a practicing scientist in differentiating between results that actually go against the established paradigm as opposed to being some problem with the research itself. Around the time we studied these Jewish philosophers we also studied the great Kashmirian atharvavedin, bhaTTa jayanta, who laid out the Hindu method of science.
The parallels between our old thinkers on the structure of the scientific method and the discourse on its dynamics offered by Popper and Kuhn led to developing a clear formulation of the scientific process. However, these did not tell us about something we were interested in actually understanding: what is the most productive and critical facet among these processes within science? Importantly, we quickly realized that the answer to this closely related to the fact that what we call science is an activity of a particular species of great apes; hence, we cannot take out the ape from science. This is indeed what is missing in the older formulations described above. In line with our life-experiences alluded to above we decided that science itself is hence a topic of ethological study much like observations on the behavior of a macaque, a baboon or any other primate. When we first announced this at a conference for communication in science, the fellow mlechCha-s were aghast – the reaction was as though something really terrible had been had been said – it had touched a raw nerve – the truly felt as thought Snowden had revealed NSA secrets.
Continued…
Filed under: Heathen thought, History, Life, Scientific ramblings Tagged: Ape, ape behavior, Darwinism, evolution, Kuhn, natural philosophy, natural selection, paradigm, philosophy, philosophy of science, Popper, revolution, science
